If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+y^2=65
We move all terms to the left:
y^2+y^2-(65)=0
We add all the numbers together, and all the variables
2y^2-65=0
a = 2; b = 0; c = -65;
Δ = b2-4ac
Δ = 02-4·2·(-65)
Δ = 520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{520}=\sqrt{4*130}=\sqrt{4}*\sqrt{130}=2\sqrt{130}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{130}}{2*2}=\frac{0-2\sqrt{130}}{4} =-\frac{2\sqrt{130}}{4} =-\frac{\sqrt{130}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{130}}{2*2}=\frac{0+2\sqrt{130}}{4} =\frac{2\sqrt{130}}{4} =\frac{\sqrt{130}}{2} $
| 11=c/15+8 | | 2(3g-5)=-21 | | 3(2/9)x=2/9 | | -14d+4d+19=-11-12d | | k-12=-5 | | 37m+24=-20+26m | | 3x+4x+5x=x+2x+2 | | P^2-6p+3=-4p^2 | | 59x+1261x-45=33(40x+40) | | -3/5w=8 | | 5x-12=11x | | 7-9u-7u=-9-8u | | 5/6f=4 | | -2.4=y+17 | | 12-2(x+3)=4(x-6)-(x-1) | | 9+(x/5)=6 | | -2×+(-8)=2x+8 | | -14p-17=15p | | y=0.6-12 | | 100=15t | | 35=21(x+1)-3(7x-1) | | 13h-19h+18=-9h-18 | | 5a^{2}=51 | | 8h+11(h-5)=-11(3h-5) | | -8s=−8s=1616 | | 21(x+1)-3(7x-1)=35 | | 3a-24=28 | | 7-3/2(-6x+4)=10+4(-4-5) | | H(x)=0.08+11.25 | | -3.5(2-3n)-2.5n=n | | x+1x+2+x=6 | | 2+9w=7w+8 |